

 Navigation

 	
 index

 	
 next |

 	Django Better Cache 0.7.0 documentation

Welcome to Django Better Cache’s documentation!

Better Cache originally provided a replacement {% cache %} tag, but as of
version 0.7 includes a Cache ORM module and a suite of caching and proxy tools.
Overall, the aim is to simplify and empower your use of caches with sane
defaults and obvious behaviors.

Table of Contents

	bettercache template tags
	cache

	CacheModel

	CachedMethod

	CachedFormMethod
	API Reference

	Bettercache Middleware and Celery Task
	Bettercache Regeneration Strategy

	When will bettercache cache a page?

	Bettercache header manipulation

	Bettercache middleware settings

	Betterache middleware TODO list

	Bettercache Proxy Server
	Settings required for proxy server

	API Documentation
	decorators

	handlers

	middleware

	objects

	proxy

	tasks

	utils

	views

	Roadmap

Template Tag

The bettercache cache template tag provides some automatic invalidation.

Cache ORM

Caching can be more than a string and random object. bettercache.objects provides an
ORM interface to structure caching and manage keys for you, replacing a mix-mash of adhoc key generation and fragile object pickling with stable cache models and key management,
via the cachemodel.

Middleware

Bettercache middleware serves as an improved version of the django caching middleware allowing better control of cache headers and easier to generate cache keys.

Celery Task

The bettercache celery task allows most pages to be updated offline in a post check fashion. This means a user never has too wait for a slow page
when serving a cached one would be acceptable.

Proxy Server

The bettercache proxy server can serve pages cached by the bettercache middleware and deal with updating via the celery task.

Cache Backend

Currently not implemented this will be a django 1.3 compatible caching backend with stampede prevention and check and set support

Discussion

You can make suggestions and seek assistance on the mailing list:

https://groups.google.com/forum/#!forum/bettercache

Contributing

Fork and send pull requests, please!

http://github.com/ironfroggy/django-better-cache/

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Better Cache 0.7.0 documentation

bettercache template tags

Currently, the only tag provided is a replacement for Django’s builtin
{% cache %} tag, which makes it easier to work with nested blocks.

cache

Better Cache provides a replacement for the default cache template tag library
from Django. It is a better version of {% cache %}.

What is better about Better Cache’s version of the cache tag?

	Nested cache fragments inherit the variables their parent fragments key on

	Parent cache fragments can be given additional keys by their child cache fragments

An example:

{% cache 500 "outer" x %}
 y = {{ y }}

 {% cache 500 "inner" y %}
 x = {{ x }}

 {% endcache %}
{% endcache %}

In the default {% cache %} tag from Django, the inner fragment will not be
rerendered when x changes, because only the outer fragment uses that as a key
variable. The outer fragment will not update with y changes, because only the
inner fragment uses that.

With Better Cache, x and y affect both, so fragments will be re-rendered when
any important variable changes.

Default Keys

Better Cache also allows a syntax of giving defaults to key variables:

{% cache 500 "test" x=10 %}
 ...
{% endcache %}

This allows the block to be rendered as if x had the value 10, caching
the result and reusing if later if x really does exist and have that value
later.

Controlling inheritence

You don’t always want the outer cache fragments to invalidate when variables
only important to the inner fragment changes. In some cases, the inner fragment
is allowed to get stale if it stays cached longer as part of the parent, so
we want a way to disable the inheritence of the variables.

You can do this with the local modifier. All modifiers after the local will
affect only this cache fragment, not its parent.

{% cache 500 "outer" x %}
 y = {{ y }}

 {% cache 500 "inner" local y %}
 x = {{ x }}

 {% endcache %}
{% endcache %}

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Better Cache 0.7.0 documentation

CacheModel

To make the management of cached data easier, bettercache provides a
structured model for data caching, without the developer constantly
building up ad-hoc key strings. This should be a familiar interface,
fashioned after Django’s own database models.

class User(CacheModel):
 username = Key()
 email = Field()
 full_name = Field()

user = User(
 username = 'bob',
 email = 'bob@hotmail.com',
 full_name = 'Bob T Fredrick',
)
user.save()

...

user = User.get(username='bob')
user.email == 'bob@hotmail.com'
user.full_name == 'Bob T Fredrick'

CacheModel subclasses are a collection of Key and Field
properties to
populate with data to be stored in the cache. The creation of keys are
automatic, based on the CacheModel class and the values given for all
the Key fields for an instance.

The cache objects can save any fields with JSON-serializable values, but
this does not include other instances of CacheModel. If you’d like
to connect multiple cached entities, you can do so with the field type
Reference.

class Workplace(CacheModel):
 name = Key()
 phone = Field()
 address = Field()
 employee_count = Field()

class User(CacheModel):
 username = Key()
 email = Field()
 full_name = Field()

 workplace = Reference(Workplace)

 mother = Reference('self')
 father = Reference('self')

Reference fields are created with a single argument: either a
CacheModel class which the field must reference, or 'self' to
refernce instances of the same class as itself.

CachedMethod

One useful CacheModel is included with bettercache, named
bettercache.decorators.CachedMethod. This class acts as a decorator for
methods, and will cache the results of those methods using a defined set of
attributes from the instance. For any instance of the class with the same
values for this set of attributes, the method will use the cached value
properly, but also use its own parameters.

This is a decorator-factory, and it takes one required parameter and one
optional.

@CachedMethod('attributes to cache on', expires=SECONDS)

class Home(object):

 def __init__(self, address):
 self.address = address

 @CachedMethod('address')
 def geocode(self):
 return g.geocode(self.address)

CachedFormMethod

An included CachedMethod decorator sublass which knows how to cache methods on
Django forms, such that given the same form results, the methods will be
cached from previous forms with the same results. This caches based on the
cleaned_data rather than pre-validation data, so if your cleaning
normalizes the input the caching will be more efficient.

class FriendsLookup(forms.Form):

 username = forms.CharField(required=True)

 @CachedFormMethod(expires=60*15) # expire in 15 minutes
 def get_friends_list(self, include_pending=False):
 username = self.cleaned_data['username']
 friends = Friendship.objects.filter(
 from_user__username=username)
 if include_pending:
 friends = friends.filter(status__in=(PENDING, APPROVED))
 else:
 friends = friends.filter(status=APPROVED)

 return friends

API Reference

	CacheModel

	A base class you can inherit and define structures to store in the cache,
much like a Django Model storing data in the database.

	CacheModel.Missing

	An exception raised when an object cannot be found in the cache.

	CacheModel.save()

	Sends the serialized object to the cache for storage.

	CacheModel.get(key1=x, key2=y)

	Looks for an instance of the cache model to load and return, by
the keys given. All keys defined in the model without defaults
must be given.

	CacheModel.from_miss(**kwargs)

	When you define a CacheModel subclass, you can opt to implement
the from_miss() method, which will be called on an instance of
your class with the keys which couldn’t be found in the database.

Your from_miss() method should initialize the instance, after
which the object will be saved to the cache and returned back from
the original get() call in the first place.

	Key

	At least one of your fields must be defined as a Key, which
will be combined with the class information to generate a unique
key to identify the object in the cache.

	Field

	In your CacheModel, you should define one or more Field
properties. The values of these properties in your instance will
all be serialized and sent to the cache when the object is saved.

	Reference

	If a field needs to contain other CacheModel instances, you may
use the special field type Reference, which will fetch the referenced
instance from the cache at load time. If any referenced fields in
a model are missing, the entire model is considered invalid and a
get() will raise a CacheModel.Missing exception.

	PickleField

	Special field type which uses the python pickle format, rather
than JSON, for serialization. This should only be used in
special cases, as pickle has a number of drawbacks and corner cases.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Better Cache 0.7.0 documentation

Bettercache Middleware and Celery Task

The bettercache middleware is intended as a replacement for django’s caching middleware that does offline page updateing via celery.

Bettercache Regeneration Strategy

Bettercache has two cache timeouts a postcheck and precheck. The postcheck time should be
shorter then the precheck. If it isn’t celery will never be used to regenerate pages.
* Before the postcheck time the page is simply served from cache.
* Betwen the postcheck and the precheck times Bettercache will serve the cached page. Then it will queue a celery task to regenerate the page and recache the page to reset both postcheck and precheck timeouts.
* After the precheck time a new page will be regenerated and served.

When will bettercache cache a page?

Bettercache will cache a page under the following conditions

	request._cache_update_cache is not True.

	The status code is 200, 203, 300, 301, 404, or 410.

	The setting BETTERCACHE_ANONYMOUS_ONLY is not True or the session hasn’t been
accessed.

	The request does not have any uncacheable headers. To change this override
has_uncacheable_headers.

See the task API docs for more information.

Bettercache header manipulation

The bettercache middleware will change some of the request headers before it caches a page for the first time.

	If BETTERCACHE_ANONYMOUS_ONLY is not True bettercache will remove Vary: Cookie headers.

	The Cache-Control headers are modified so that
- max-age and pre-check set to BETTERCACHE_CACHE_MAXAGE unless the request already had a max-age header in which case that will be honored.
- post-check is set to BETTERCACHE_EDGE_POSTCECK_RATIO * the max-age.

	The Edge-Control header is set with cache-maxage to BETTERCACHE_EDGE_MAXAGE.

Bettercache middleware settings

The following settings are currently aspirational but the changes should be coming soon.

	BETTERCACHE_EXTERNAL_MAXAGE - the default external the Cache-Control max-age/pre-check headers to

	BETTERCACHE_EXTERNAL_POSTCHECK_RATIO - the ratio of max_age to set the Cache-Control post-check header to

	BETTERCACHE_LOCAL_MAXAGE - the number of seconds to cache pages for locally

	BETTERCACHE_LOCAL_POSTCHECK - the number of seconds after which to attempt to regenerate a page locally

See the middleware API docs for more information.

Betterache middleware TODO list

	Remove akamai headers and create hooks for additional header manipulation

	Allow views to set non-default cache local_maxage/postchecks?

	Switch to better settings module

	Switch to not caching django request objects but json body/header/additional info objects

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Better Cache 0.7.0 documentation

Bettercache Proxy Server

The Bettercache proxy server is intended to work with a slower django application that’s using the
bettercache middleware. It is threadsafe so many proxy requests can be served without loading the
application that is actually generating the pages. It will take care of serving pages from a cache
populated by the bettercache middleware/celery task and sending tasks to celery to regenerate those
pages when necessary.

Settings required for proxy server

In addition to the normal settings for the bettercache middleware, celery and django the following
setting is also required for the proxy server.

	BETTERCACHE_ORIGIN_HOST - The server which proxy traffic should be directed at. The host name from the
original request will be passed on.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Better Cache 0.7.0 documentation

API Documentation

decorators

handlers

middleware

objects

proxy

tasks

utils

views

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Django Better Cache 0.7.0 documentation

Roadmap

The next releases of bettercache is planned to expand upon
the CacheModel even further, handling cache misses and
allow push updates of cached data, among other new treats.

	from_model_APP_MODEL() methods on CacheModel can be implemented to
update the cached data when models are updated

	Secondary key-sets, to allow more than one lookup for the same cache data

	Included Celery tasks to async update the cached data

	Two part from_miss with a sync step that defers the second step to Celery

	Implemented nested invalidation of CacheModels

	Convert the replacement {% cache %} tag to generate CacheModels

	Add a {% notcached %} tag to nest inside {% cache %} blocks

	Add an {% else %} clause to cache blocks

	Defer rendering of cache blocks to celery

	Push deferred-rendered cache blocks back to pages

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Django Better Cache 0.7.0 documentation

Index

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 _static/minus.png

search.html

 Navigation

 		
 index

 		Django Better Cache 0.7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

